Tsai-Ying Lin, Tsung-Han Lin, Hui-Hsiang Tung, Rung-Bin Lin
{"title":"Double-Via-Driven Standard Cell Library Design","authors":"Tsai-Ying Lin, Tsung-Han Lin, Hui-Hsiang Tung, Rung-Bin Lin","doi":"10.1145/1266366.1266627","DOIUrl":null,"url":null,"abstract":"Double-via placement is important for increasing chip manufacturing yield. Commercial tools and recent work have done a great job for it. However, they are found with a limited capability of placing more double vias (called vial) between metal 1 and metal 2. Such a limitation is caused by the way we design the standard cells and can not be resolved by developing better tools. This paper presents a double-via-driven standard cell library design approach to solving this problem. Compared to the results obtained using a commercial cell library, our library on average achieves 78% reduction in dead vias and 95% reduction in dead vials at the expense of 11% increase in total via count. We achieve these results (almost) at no extra cost in total cell area and wire length","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1266366.1266627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Double-via placement is important for increasing chip manufacturing yield. Commercial tools and recent work have done a great job for it. However, they are found with a limited capability of placing more double vias (called vial) between metal 1 and metal 2. Such a limitation is caused by the way we design the standard cells and can not be resolved by developing better tools. This paper presents a double-via-driven standard cell library design approach to solving this problem. Compared to the results obtained using a commercial cell library, our library on average achieves 78% reduction in dead vias and 95% reduction in dead vials at the expense of 11% increase in total via count. We achieve these results (almost) at no extra cost in total cell area and wire length