Accelerating Discrete Fourier Transforms with dot-product engine

Miao Hu, J. Strachan
{"title":"Accelerating Discrete Fourier Transforms with dot-product engine","authors":"Miao Hu, J. Strachan","doi":"10.1109/ICRC.2016.7738682","DOIUrl":null,"url":null,"abstract":"Discrete Fourier Transforms (DFT) are extremely useful in signal processing. Usually they are computed with the Fast Fourier Transform (FFT) method as it reduces the computing complexity from O(N2) to O(Nlog(N)). However, FFT is still not powerful enough for many real-time tasks which have stringent requirements on throughput, energy efficiency and cost, such as Internet of Things (IoT). In this paper, we present a solution of computing DFT using the dot-product engine (DPE) - a one transistor one memristor (1T1M) crossbar array with hybrid peripheral circuit support. With this solution, the computing complexity is further reduced to a constant O(λ) independent of the input data size, where λ is the timing ratio of one DPE operation comparing to one real multiplication operation in digital systems.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Discrete Fourier Transforms (DFT) are extremely useful in signal processing. Usually they are computed with the Fast Fourier Transform (FFT) method as it reduces the computing complexity from O(N2) to O(Nlog(N)). However, FFT is still not powerful enough for many real-time tasks which have stringent requirements on throughput, energy efficiency and cost, such as Internet of Things (IoT). In this paper, we present a solution of computing DFT using the dot-product engine (DPE) - a one transistor one memristor (1T1M) crossbar array with hybrid peripheral circuit support. With this solution, the computing complexity is further reduced to a constant O(λ) independent of the input data size, where λ is the timing ratio of one DPE operation comparing to one real multiplication operation in digital systems.
用点积引擎加速离散傅里叶变换
离散傅里叶变换(DFT)在信号处理中非常有用。通常使用快速傅里叶变换(FFT)方法计算,因为它将计算复杂度从O(N2)降低到O(Nlog(N))。然而,对于许多对吞吐量、能源效率和成本有严格要求的实时任务,如物联网(IoT), FFT仍然不够强大。在本文中,我们提出了一种使用点积引擎(DPE)计算DFT的解决方案-一个具有混合外围电路支持的一晶体管一忆阻器(1T1M)交叉棒阵列。通过这种解决方案,计算复杂性进一步降低到与输入数据大小无关的常数O(λ),其中λ是数字系统中一个DPE操作与一个实际乘法操作的时间比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信