Adopting cross layer approach for detecting and segregating malicious nodes in MANET

J. Vinayagam, C. Balaswamy, K. Soundararajan
{"title":"Adopting cross layer approach for detecting and segregating malicious nodes in MANET","authors":"J. Vinayagam, C. Balaswamy, K. Soundararajan","doi":"10.1109/CSPC.2017.8305890","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a cross layer approach to detect the malicious node in MANET. We develop a cross layer data monitoring algorithm in order to correlate the MAC (Medium Access Control) layer parameters with network layer parameters for effectively detecting malicious nodes from the network. For segregating the malicious nodes, our approach utilizes both the single and cross layer parameters. information about detected malicious node ids from the network is broadcasted to the other nodes in the network. The routing protocol which is used in the simulation is AODV (Ad Hoc On-Demand Distance Vector). The performance of our technique is proved by the simulation of our system model using the network simulator NS-2. Experimental analysis reveals that our proposed approach defends the Black hole attack with better performance in terms of packet loss ratio, packet delivery ratio and Normalized Routing Load.","PeriodicalId":123773,"journal":{"name":"2017 International Conference on Signal Processing and Communication (ICSPC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPC.2017.8305890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a cross layer approach to detect the malicious node in MANET. We develop a cross layer data monitoring algorithm in order to correlate the MAC (Medium Access Control) layer parameters with network layer parameters for effectively detecting malicious nodes from the network. For segregating the malicious nodes, our approach utilizes both the single and cross layer parameters. information about detected malicious node ids from the network is broadcasted to the other nodes in the network. The routing protocol which is used in the simulation is AODV (Ad Hoc On-Demand Distance Vector). The performance of our technique is proved by the simulation of our system model using the network simulator NS-2. Experimental analysis reveals that our proposed approach defends the Black hole attack with better performance in terms of packet loss ratio, packet delivery ratio and Normalized Routing Load.
采用跨层方法对MANET中的恶意节点进行检测和分离
在本文中,我们提出了一种跨层的方法来检测MANET中的恶意节点。为了有效地检测网络中的恶意节点,我们开发了一种跨层数据监控算法,将MAC层参数与网络层参数相关联。为了分离恶意节点,我们的方法同时利用了单层和跨层参数。从网络中检测到的恶意节点id信息被广播到网络中的其他节点。仿真中使用的路由协议是AODV (Ad Hoc On-Demand Distance Vector)。利用网络模拟器NS-2对系统模型进行仿真,验证了该技术的有效性。实验分析表明,该方法在丢包率、包投递率和归一化路由负载方面具有更好的防御黑洞攻击的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信