Application of Singular Value Decomposition Method for Acoustic Emission Data Analysis

M. Kutsenko, V. Ovcharuk, D. Solovev
{"title":"Application of Singular Value Decomposition Method for Acoustic Emission Data Analysis","authors":"M. Kutsenko, V. Ovcharuk, D. Solovev","doi":"10.1109/EASTСONF.2019.8725314","DOIUrl":null,"url":null,"abstract":"The article describes the possibilities of the singular decomposition method in the study of acoustic emission data. Acoustic signals of various nature were used as an object of study. A method of acoustic signals identification based on singular spectrums and additive components contribution is presented in the paper. At the moment, singular spectral analysis method has not practically been considered at acoustic signals researching. The obtained results are fundamentally new and confirm the promise of the method, in particular when solving the identification task.","PeriodicalId":261560,"journal":{"name":"2019 International Science and Technology Conference \"EastСonf\"","volume":"505 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Science and Technology Conference \"EastСonf\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EASTСONF.2019.8725314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The article describes the possibilities of the singular decomposition method in the study of acoustic emission data. Acoustic signals of various nature were used as an object of study. A method of acoustic signals identification based on singular spectrums and additive components contribution is presented in the paper. At the moment, singular spectral analysis method has not practically been considered at acoustic signals researching. The obtained results are fundamentally new and confirm the promise of the method, in particular when solving the identification task.
奇异值分解方法在声发射数据分析中的应用
本文介绍了奇异分解方法在声发射数据研究中的可能性。利用各种性质的声信号作为研究对象。提出了一种基于奇异谱和加性分量贡献的声信号识别方法。目前,奇异谱分析方法在声信号研究中尚未得到实际应用。所获得的结果基本上是新的,并证实了该方法的前景,特别是在解决识别任务时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信