Bing Dang, P. Joseph, M. Bakir, T. Spencer, P. Kohl, J. Meindl
{"title":"Wafer-level microfluidic cooling interconnects for GSI","authors":"Bing Dang, P. Joseph, M. Bakir, T. Spencer, P. Kohl, J. Meindl","doi":"10.1109/IITC.2005.1499971","DOIUrl":null,"url":null,"abstract":"We present a novel CMOS compatible approach to fabricate on-chip microfluidic cooling channels using a spin-on sacrificial polymer material at wafer level. Deep trenches (>100 /spl mu/m) etched into the backside of an IC wafer were successfully filled up by a single spin coating step with a high viscosity sacrificial polymer. A porous overcoat material allows the decomposition of the polymer to form enclosed microchannels. Through chip holes and polymer pipes are used as the inlet/outlet interconnects. Different channel array designs were described and the pressure drop was estimated for a heat flux of 100 W/cm/sup 2/ with DI water flow rate. The resulting cooling scheme offers a simple and compact solution to transfer cooling liquid directly into a GSI chip and is fully compatible with flip-chip packaging.","PeriodicalId":156268,"journal":{"name":"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2005.1499971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We present a novel CMOS compatible approach to fabricate on-chip microfluidic cooling channels using a spin-on sacrificial polymer material at wafer level. Deep trenches (>100 /spl mu/m) etched into the backside of an IC wafer were successfully filled up by a single spin coating step with a high viscosity sacrificial polymer. A porous overcoat material allows the decomposition of the polymer to form enclosed microchannels. Through chip holes and polymer pipes are used as the inlet/outlet interconnects. Different channel array designs were described and the pressure drop was estimated for a heat flux of 100 W/cm/sup 2/ with DI water flow rate. The resulting cooling scheme offers a simple and compact solution to transfer cooling liquid directly into a GSI chip and is fully compatible with flip-chip packaging.