K-distribution parameters estimation based on the Nelder-Mead algorithm in presence of thermal noise

A. Mezache, M. Sahed, T. Laroussi
{"title":"K-distribution parameters estimation based on the Nelder-Mead algorithm in presence of thermal noise","authors":"A. Mezache, M. Sahed, T. Laroussi","doi":"10.1109/ACTEA.2009.5227861","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient approach to the estimation of the compound K-distribution parameters in presence of additive thermal noise. This is acquired by means of a multidimensional unconstrained nonlinear minimization algorithm based upon the Nelder-Mead direct search method. In doing this, we minimize the sum of squared residuals. The best fit is simply achieved by a direct comparison of the experimentally measured cumulative distribution function (CDF) of the recorded data with the set of curves derived from the model of interest. A good minimization can be reached only if the real CDF is accurately estimated. We show, particularly, that the new approach yields the best spiky clutter parameter estimation. The proposed estimator is more efficient than existing estimation methods.","PeriodicalId":308909,"journal":{"name":"2009 International Conference on Advances in Computational Tools for Engineering Applications","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advances in Computational Tools for Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2009.5227861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose an efficient approach to the estimation of the compound K-distribution parameters in presence of additive thermal noise. This is acquired by means of a multidimensional unconstrained nonlinear minimization algorithm based upon the Nelder-Mead direct search method. In doing this, we minimize the sum of squared residuals. The best fit is simply achieved by a direct comparison of the experimentally measured cumulative distribution function (CDF) of the recorded data with the set of curves derived from the model of interest. A good minimization can be reached only if the real CDF is accurately estimated. We show, particularly, that the new approach yields the best spiky clutter parameter estimation. The proposed estimator is more efficient than existing estimation methods.
热噪声存在下基于Nelder-Mead算法的k分布参数估计
在本文中,我们提出了一种有效的方法来估计存在加性热噪声的复合k分布参数。这是通过基于Nelder-Mead直接搜索法的多维无约束非线性最小化算法获得的。在此过程中,我们将残差平方和最小化。通过直接比较实验测量的记录数据的累积分布函数(CDF)与从感兴趣的模型导出的曲线集,可以简单地实现最佳拟合。只有准确地估计实际的CDF,才能达到良好的最小化。我们特别表明,新方法产生了最好的尖波杂波参数估计。所提出的估计方法比现有的估计方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信