{"title":"Composed Physics- and Data-driven System Identification for Non-autonomous Systems in Control Engineering","authors":"Ricarda-Samantha Götte, Julia Timmermann","doi":"10.1109/AIRC56195.2022.9836982","DOIUrl":null,"url":null,"abstract":"In control design most control strategies are model-based and require accurate models to be applied successfully. Due to simplifications and the model-reality-gap physics-derived models frequently exhibit deviations from real-world-systems. Likewise, purely data-driven methods often do not generalise well enough and may violate physical laws. Recently Physics-Guided Neural Networks (PGNN) and physics-inspired loss functions separately have shown promising results to conquer these drawbacks. In this contribution we extend existing methods towards the identification of non-autonomous systems and propose a combined approach PGNN-L, which uses a PGNN and a physics-inspired loss term (-L) to successfully identify the system's dynamics, while maintaining the consistency with physical laws. The proposed method is demonstrated on two real-world nonlinear systems and outperforms existing techniques regarding complexity and reliability.","PeriodicalId":147463,"journal":{"name":"2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Artificial Intelligence, Robotics and Control (AIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRC56195.2022.9836982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In control design most control strategies are model-based and require accurate models to be applied successfully. Due to simplifications and the model-reality-gap physics-derived models frequently exhibit deviations from real-world-systems. Likewise, purely data-driven methods often do not generalise well enough and may violate physical laws. Recently Physics-Guided Neural Networks (PGNN) and physics-inspired loss functions separately have shown promising results to conquer these drawbacks. In this contribution we extend existing methods towards the identification of non-autonomous systems and propose a combined approach PGNN-L, which uses a PGNN and a physics-inspired loss term (-L) to successfully identify the system's dynamics, while maintaining the consistency with physical laws. The proposed method is demonstrated on two real-world nonlinear systems and outperforms existing techniques regarding complexity and reliability.