Method for Extraction Wavelet Packets' Coefficients in Loudspeaker Fault Detection Based on PCA

Hongxing Wang, Zengpu Xu, C. Zhou, L. Yang
{"title":"Method for Extraction Wavelet Packets' Coefficients in Loudspeaker Fault Detection Based on PCA","authors":"Hongxing Wang, Zengpu Xu, C. Zhou, L. Yang","doi":"10.1109/PACIIA.2008.375","DOIUrl":null,"url":null,"abstract":"This paper presents a new method using principal component analysis (PCA) to eliminate data redundancy in loudspeaker fault detection. It uses wavelet packet transformation (WPT) to decompose the loudspeaker acoustics signal into 32 packet node signals. Then, get the mean, max, standard deviation and correlation coefficient of every node envelopment .With the way of observing, it gets 63 coefficients from 128 ones which are helpful for detection of fault. Using the new way above, 32 coefficients are removed from the 63. The failed loudspeaker can be found with the help of artificial neural network (ANN). It is proved that the method is very effective in experiment.","PeriodicalId":275193,"journal":{"name":"IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIIA.2008.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new method using principal component analysis (PCA) to eliminate data redundancy in loudspeaker fault detection. It uses wavelet packet transformation (WPT) to decompose the loudspeaker acoustics signal into 32 packet node signals. Then, get the mean, max, standard deviation and correlation coefficient of every node envelopment .With the way of observing, it gets 63 coefficients from 128 ones which are helpful for detection of fault. Using the new way above, 32 coefficients are removed from the 63. The failed loudspeaker can be found with the help of artificial neural network (ANN). It is proved that the method is very effective in experiment.
基于PCA的扬声器故障检测小波包系数提取方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信