Experimental Dynamics Identification of Autonomous Underwater Vehicle and Modified Model Reference Adaptive Controller Design*

Zhibin Jiang, Shuo Li, Tiejun Liu, Sheng Qi, Ya-xing Wang
{"title":"Experimental Dynamics Identification of Autonomous Underwater Vehicle and Modified Model Reference Adaptive Controller Design*","authors":"Zhibin Jiang, Shuo Li, Tiejun Liu, Sheng Qi, Ya-xing Wang","doi":"10.1109/WRCSARA53879.2021.9612691","DOIUrl":null,"url":null,"abstract":"This paper investigates experimental diving dynamic model identification of Autonomous Underwater Vehicles (AUVs). An effective identification method based on tracking differentiator and augmented recursive least square (TD-ARLS) estimator is introduced to identify unknown model parameters. Depending on the identified model, a modified Model Reference Adaptive Control (MRAC) law is proposed to obtain optimal control performance. The identified model is adopted as the reference model to design the modified MRAC for the AUV’s diving dynamics. The lake trials of Explorer 1000 AUV and simulation results illustrate the effectiveness of the proposed method.","PeriodicalId":246050,"journal":{"name":"2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRCSARA53879.2021.9612691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates experimental diving dynamic model identification of Autonomous Underwater Vehicles (AUVs). An effective identification method based on tracking differentiator and augmented recursive least square (TD-ARLS) estimator is introduced to identify unknown model parameters. Depending on the identified model, a modified Model Reference Adaptive Control (MRAC) law is proposed to obtain optimal control performance. The identified model is adopted as the reference model to design the modified MRAC for the AUV’s diving dynamics. The lake trials of Explorer 1000 AUV and simulation results illustrate the effectiveness of the proposed method.
自主水下航行器实验动力学辨识及改进模型参考自适应控制器设计*
研究了自主水下航行器(auv)实验潜水动力学模型辨识问题。提出了一种基于跟踪微分器和增广递归最小二乘(TD-ARLS)估计的模型参数辨识方法。根据所识别的模型,提出了一种改进的模型参考自适应控制(MRAC)律,以获得最优控制性能。将辨识出的模型作为参考模型,设计了水下机器人潜水动力学的修正MRAC。Explorer 1000水下航行器的湖泊试验和仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信