Xiao Xu, Zheng Sun, Kangyang Xu, Xin Yang, T. Kurniawan, T. Yoshimasu
{"title":"A 2.5-GHz band low-voltage class-E power amplifier IC for short-range wireless communications in 180-nm CMOS","authors":"Xiao Xu, Zheng Sun, Kangyang Xu, Xin Yang, T. Kurniawan, T. Yoshimasu","doi":"10.1109/RFIT.2014.6933241","DOIUrl":null,"url":null,"abstract":"A fully integrated class-E power amplifier IC in 180-nm CMOS is presented for 2.5-GHz band short range wireless communication systems. To realize high efficiency with low operation voltage, a class-E amplifier with back gate effect has been designed, fabricated and fully evaluated. The proposed amplifier IC can operate at a supply voltage from 0.5 V to 1.5 V. The amplifier IC exhibits a P1dB of 6.9 dBm and a saturated output power of 10.7 dBm with a maximum drain efficiency of 36.4% at a 1.0 V power supply.","PeriodicalId":281858,"journal":{"name":"2014 IEEE International Symposium on Radio-Frequency Integration Technology","volume":"28 26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Radio-Frequency Integration Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2014.6933241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A fully integrated class-E power amplifier IC in 180-nm CMOS is presented for 2.5-GHz band short range wireless communication systems. To realize high efficiency with low operation voltage, a class-E amplifier with back gate effect has been designed, fabricated and fully evaluated. The proposed amplifier IC can operate at a supply voltage from 0.5 V to 1.5 V. The amplifier IC exhibits a P1dB of 6.9 dBm and a saturated output power of 10.7 dBm with a maximum drain efficiency of 36.4% at a 1.0 V power supply.