Minimization of OPKFDDs using genetic algorithms

Mi-jin Jung, G. Lee, Sungju Park, R. Drechsler
{"title":"Minimization of OPKFDDs using genetic algorithms","authors":"Mi-jin Jung, G. Lee, Sungju Park, R. Drechsler","doi":"10.1109/DSD.2001.952120","DOIUrl":null,"url":null,"abstract":"OPKFDDs (Ordered Pseudo-Kronecker Functional Decision Diagrams) are one of ordered-DDs (Decision Diagrams) in which each node can take one of three decomposition types: Shannon, positive Davio and negative Davio. OPKFDDs provide representations of Boolean functions with smaller number of nodes than other DDs. Since an appropriate decomposition type has to be chosen for each node, the size of the representation is decided by the selection of the decomposition type as well as the variable ordering of the diagram. To overcome the huge search space for an optimal solution, a genetic algorithm is proposed to generate OPKFDDs with the minimal number of nodes with experimental results.","PeriodicalId":285358,"journal":{"name":"Proceedings Euromicro Symposium on Digital Systems Design","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2001.952120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

OPKFDDs (Ordered Pseudo-Kronecker Functional Decision Diagrams) are one of ordered-DDs (Decision Diagrams) in which each node can take one of three decomposition types: Shannon, positive Davio and negative Davio. OPKFDDs provide representations of Boolean functions with smaller number of nodes than other DDs. Since an appropriate decomposition type has to be chosen for each node, the size of the representation is decided by the selection of the decomposition type as well as the variable ordering of the diagram. To overcome the huge search space for an optimal solution, a genetic algorithm is proposed to generate OPKFDDs with the minimal number of nodes with experimental results.
利用遗传算法最小化opkfdd
opkfdd(有序伪kronecker功能决策图)是有序dd(决策图)中的一种,其中每个节点可以采用三种分解类型之一:Shannon、正Davio和负Davio。opkfdd提供布尔函数的表示,其节点数量比其他dd少。由于必须为每个节点选择适当的分解类型,因此表示的大小取决于分解类型的选择以及图的变量顺序。为了克服最优解搜索空间大的问题,提出了一种基于实验结果的最小节点数遗传算法来生成opkfdd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信