Hyunsoo Ha, Yunjae Suh, Seon-Kyoo Lee, Hong-June Park, J. Sim
{"title":"A 0.5V, 11.3-μW, 1-kS/s resistive sensor interface circuit with correlated double sampling","authors":"Hyunsoo Ha, Yunjae Suh, Seon-Kyoo Lee, Hong-June Park, J. Sim","doi":"10.1109/CICC.2012.6330702","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power resistive sensor interface circuit with correlated double sampling which reduces the effect of amplifier offset and enables time-interleaved single-to-differential sampling. The proposed sampling scheme, used with a 12b SAR-type analog-to-digital converter, effectively doubles the input signal and improves linearity. The fabricated chip in 0.13μm CMOS demonstrates a sampling rate of 1-kS/s and a dynamic range of 117dB with a maximum conversion error of 0.32-percent while consuming only 11.3-μW from single supply voltage of 0.5V.","PeriodicalId":130434,"journal":{"name":"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2012 Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2012.6330702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper presents a low-power resistive sensor interface circuit with correlated double sampling which reduces the effect of amplifier offset and enables time-interleaved single-to-differential sampling. The proposed sampling scheme, used with a 12b SAR-type analog-to-digital converter, effectively doubles the input signal and improves linearity. The fabricated chip in 0.13μm CMOS demonstrates a sampling rate of 1-kS/s and a dynamic range of 117dB with a maximum conversion error of 0.32-percent while consuming only 11.3-μW from single supply voltage of 0.5V.