Operating Temperature Based Vulnerabilities in ReRAM

T. Schultz, R. Jha
{"title":"Operating Temperature Based Vulnerabilities in ReRAM","authors":"T. Schultz, R. Jha","doi":"10.1109/MWSCAS.2019.8885182","DOIUrl":null,"url":null,"abstract":"Resistive Random-Access Memory (ReRAM) devices have caught significant research attention as scalable non-volatile memory (NVM) technology for high-density data storage in 3-D crossbar architectures. ReRAM devices can switch with low programming voltages (<±1 V) at fast time-scales (~ 10-100 ns) that make them an attractive option for on-chip embedded memory applications or off-chip high density memory storage. Memory storage read/write schemes rely on specific timing, voltage, and sensing thresholds to change and determine the states of the devices. While several in-memory computing architectures with ReRAM have been proposed, the impact of chip operating temperatures on write and read operations of ReRAM and the impact on resistive states is not well studied. This paper reports the impact of the temperature on the ReRAM devices during the write and read operations.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resistive Random-Access Memory (ReRAM) devices have caught significant research attention as scalable non-volatile memory (NVM) technology for high-density data storage in 3-D crossbar architectures. ReRAM devices can switch with low programming voltages (<±1 V) at fast time-scales (~ 10-100 ns) that make them an attractive option for on-chip embedded memory applications or off-chip high density memory storage. Memory storage read/write schemes rely on specific timing, voltage, and sensing thresholds to change and determine the states of the devices. While several in-memory computing architectures with ReRAM have been proposed, the impact of chip operating temperatures on write and read operations of ReRAM and the impact on resistive states is not well studied. This paper reports the impact of the temperature on the ReRAM devices during the write and read operations.
ReRAM中基于操作温度的漏洞
电阻式随机存取存储器(ReRAM)作为一种可扩展的非易失性存储器(NVM)技术,在三维交叉条形结构中用于高密度数据存储,引起了人们的广泛关注。ReRAM器件可以在快速时间尺度(~ 10-100 ns)下以低编程电压(<±1 V)切换,这使它们成为片上嵌入式存储器应用或片外高密度存储器存储的有吸引力的选择。内存存储读/写方案依赖于特定的定时、电压和传感阈值来改变和确定设备的状态。虽然已经提出了几种基于ReRAM的内存计算架构,但芯片工作温度对ReRAM读写操作的影响以及对电阻状态的影响尚未得到很好的研究。本文报道了在读写过程中温度对ReRAM器件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信