Large Mixed-Frequency Vars with a Parsimonious Time-Varying Parameter Structure

T. Götz, Klemens Hauzenberger
{"title":"Large Mixed-Frequency Vars with a Parsimonious Time-Varying Parameter Structure","authors":"T. Götz, Klemens Hauzenberger","doi":"10.1093/ECTJ/UTAB001","DOIUrl":null,"url":null,"abstract":"\n In order to simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural change, we introduce a time-varying parameter mixed-frequency vector autoregression (VAR). Time variation enters in a parsimonious way: only the intercepts and a common factor in the error variances can vary. Computational complexity therefore remains in a range that still allows us to estimate moderately large VARs in a reasonable amount of time. This makes our model an appealing addition to any suite of forecasting models. For eleven U.S. variables, we show the competitiveness compared to a commonly used constant-coefficient mixed-frequency VAR and other related model classes. Our model also accurately captures the drop in the gross domestic product during the COVID-19 pandemic.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In order to simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural change, we introduce a time-varying parameter mixed-frequency vector autoregression (VAR). Time variation enters in a parsimonious way: only the intercepts and a common factor in the error variances can vary. Computational complexity therefore remains in a range that still allows us to estimate moderately large VARs in a reasonable amount of time. This makes our model an appealing addition to any suite of forecasting models. For eleven U.S. variables, we show the competitiveness compared to a commonly used constant-coefficient mixed-frequency VAR and other related model classes. Our model also accurately captures the drop in the gross domestic product during the COVID-19 pandemic.
具有简约时变参数结构的大混合频变
为了同时考虑混合频率时间序列、它们的联合动力学和可能的结构变化,我们引入了时变参数混合频率向量自回归(VAR)。时间变化以一种简约的方式进入:只有截距和误差方差中的一个共同因子可以变化。因此,计算复杂性仍然保持在一个范围内,使我们能够在合理的时间内估计中等规模的var。这使得我们的模型对任何一套预测模型来说都是一个有吸引力的补充。对于11个美国变量,我们显示了与常用的常系数混合频率VAR和其他相关模型类相比的竞争力。我们的模型还准确地反映了2019冠状病毒病大流行期间国内生产总值的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信