Mining Patient Experiences on Web 2.0 - A Case Study in the Pharmaceutical Industry

Carolin Kaiser, F. Bodendorf
{"title":"Mining Patient Experiences on Web 2.0 - A Case Study in the Pharmaceutical Industry","authors":"Carolin Kaiser, F. Bodendorf","doi":"10.1109/SRII.2012.114","DOIUrl":null,"url":null,"abstract":"An increasing number of patients and family members interact online and exchange their experiences with diseases and therapies. The huge amount of online health data represents a rich source of knowledge pharmaceutical companies. The analysis of this data enables the identification of strengths and weaknesses of their drugs. An approach is presented which allows the extraction and analysis of patient experiences with drugs expressed in online reviews by combining methods coming from text mining and data mining. The approach is exemplarily applied to a data set comprising patients' experiences with smoking deterrents.","PeriodicalId":110778,"journal":{"name":"2012 Annual SRII Global Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Annual SRII Global Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRII.2012.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

An increasing number of patients and family members interact online and exchange their experiences with diseases and therapies. The huge amount of online health data represents a rich source of knowledge pharmaceutical companies. The analysis of this data enables the identification of strengths and weaknesses of their drugs. An approach is presented which allows the extraction and analysis of patient experiences with drugs expressed in online reviews by combining methods coming from text mining and data mining. The approach is exemplarily applied to a data set comprising patients' experiences with smoking deterrents.
在Web 2.0上挖掘患者体验——制药行业的一个案例研究
越来越多的患者和家属在网上互动,交流他们的疾病和治疗经验。海量的在线健康数据为制药公司提供了丰富的知识来源。通过对这些数据的分析,可以确定其药物的优点和缺点。本文提出了一种方法,通过结合文本挖掘和数据挖掘的方法,可以提取和分析在线评论中表达的患者用药体验。该方法范例应用于包含患者吸烟威慑经验的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信