Adaptive transmit policies for cost-efficient power allocation in multi-carrier systems

Salvatore D’oro, P. Mertikopoulos, A. L. Moustakas, S. Palazzo
{"title":"Adaptive transmit policies for cost-efficient power allocation in multi-carrier systems","authors":"Salvatore D’oro, P. Mertikopoulos, A. L. Moustakas, S. Palazzo","doi":"10.1109/WIOPT.2014.6850271","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the problem of cost/energy-efficient power allocation in uplink multi-carrier orthogonal frequency-division multiple access (OFDMA) wireless networks. In particular, we consider a set of wireless users who seek to maximize their transmission rate subject to pricing limitations and we show that the resulting non-cooperative game admits a unique equilibrium for almost every realization of the system's channels. We also propose a distributed exponential learning scheme which allows users to converge to the game's equilibrium exponentially fast by using only local channel state information (CSI) and signal to interference-plus-noise ratio (SINR) measurements. Given that such measurements are often imperfect in practical scenarios, a major challenge occurs when the users' information is subject to random perturbations. In this case, by using tools and ideas from stochastic convex programming, we show that the proposed learning scheme retains its convergence properties irrespective of the magnitude of the observational errors.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"1166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we examine the problem of cost/energy-efficient power allocation in uplink multi-carrier orthogonal frequency-division multiple access (OFDMA) wireless networks. In particular, we consider a set of wireless users who seek to maximize their transmission rate subject to pricing limitations and we show that the resulting non-cooperative game admits a unique equilibrium for almost every realization of the system's channels. We also propose a distributed exponential learning scheme which allows users to converge to the game's equilibrium exponentially fast by using only local channel state information (CSI) and signal to interference-plus-noise ratio (SINR) measurements. Given that such measurements are often imperfect in practical scenarios, a major challenge occurs when the users' information is subject to random perturbations. In this case, by using tools and ideas from stochastic convex programming, we show that the proposed learning scheme retains its convergence properties irrespective of the magnitude of the observational errors.
多载波系统中经济高效的功率分配自适应传输策略
本文研究了上行多载波正交频分多址(OFDMA)无线网络中成本/节能的功率分配问题。特别地,我们考虑了一组在价格限制下寻求最大传输速率的无线用户,我们证明了由此产生的非合作博弈对系统信道的几乎每一个实现都承认一个独特的均衡。我们还提出了一种分布式指数学习方案,该方案允许用户仅使用本地信道状态信息(CSI)和信号干扰加噪声比(SINR)测量以指数速度收敛到游戏平衡。考虑到这种测量在实际场景中往往不完美,当用户的信息受到随机扰动时,就会出现重大挑战。在这种情况下,通过使用随机凸规划的工具和思想,我们证明了所提出的学习方案保持其收敛性,而不管观测误差的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信