A 28nm 1.644TFLOPS/W Floating-Point Computation SRAM Macro with Variable Precision for Deep Neural Network Inference and Training

Sangsu Jeong, Jeongwoo Park, Dongsuk Jeon
{"title":"A 28nm 1.644TFLOPS/W Floating-Point Computation SRAM Macro with Variable Precision for Deep Neural Network Inference and Training","authors":"Sangsu Jeong, Jeongwoo Park, Dongsuk Jeon","doi":"10.1109/ESSCIRC55480.2022.9911450","DOIUrl":null,"url":null,"abstract":"This paper presents a digital compute-in-memory (CIM) macro for accelerating deep neural networks. The macro provides high-precision computation required for training deep neural networks and running state-of-the-art models by supporting floating-point MAC operations. Additionally, the design supports variable computation precision, enabling optimized processing for different models and tasks. The design achieves 1.644TFLOPS/W energy efficiency and 57.9GFLOPS/mm2 computation density while supporting a wide range of floating-point data formats and computation precisions.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a digital compute-in-memory (CIM) macro for accelerating deep neural networks. The macro provides high-precision computation required for training deep neural networks and running state-of-the-art models by supporting floating-point MAC operations. Additionally, the design supports variable computation precision, enabling optimized processing for different models and tasks. The design achieves 1.644TFLOPS/W energy efficiency and 57.9GFLOPS/mm2 computation density while supporting a wide range of floating-point data formats and computation precisions.
用于深度神经网络推理和训练的28nm可变精度1.644TFLOPS/W浮点计算SRAM宏
提出了一种用于加速深度神经网络的数字内存计算宏(CIM)。宏通过支持浮点MAC操作,为训练深度神经网络和运行最先进的模型提供了所需的高精度计算。此外,该设计支持可变计算精度,可以针对不同的模型和任务进行优化处理。该设计实现了1.644TFLOPS/W的能效和57.9GFLOPS/mm2的计算密度,同时支持多种浮点数据格式和计算精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信