Learning Sentence Reduction Rules for Brazilian Portuguese

Daniel Kawamoto, T. Pardo
{"title":"Learning Sentence Reduction Rules for Brazilian Portuguese","authors":"Daniel Kawamoto, T. Pardo","doi":"10.5220/0003030300900099","DOIUrl":null,"url":null,"abstract":"We present in this paper a method for sentence reduction with summarization purposes. The task is modeled as a machine learning problem, relying on shallow and linguistic features, in order to automatically learn symbolic patterns/rules that produce good sentence reductions. We evaluate our results with Brazilian Portuguese texts and show that we achieve high accuracy and produce better results than the existing solution for this language.","PeriodicalId":378427,"journal":{"name":"International Workshop on Natural Language Processing and Cognitive Science","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Natural Language Processing and Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003030300900099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present in this paper a method for sentence reduction with summarization purposes. The task is modeled as a machine learning problem, relying on shallow and linguistic features, in order to automatically learn symbolic patterns/rules that produce good sentence reductions. We evaluate our results with Brazilian Portuguese texts and show that we achieve high accuracy and produce better results than the existing solution for this language.
学习巴西葡萄牙语减句规则
本文提出了一种以摘要为目的的句子缩减方法。该任务被建模为一个机器学习问题,依赖于浅层和语言特征,以便自动学习产生良好句子缩减的符号模式/规则。我们用巴西葡萄牙语文本评估了我们的结果,并表明我们达到了很高的准确性,并且比该语言的现有解决方案产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信