A path toward ultra-low-energy computing

E. Debenedictis, M. Frank, N. Ganesh, N. Anderson
{"title":"A path toward ultra-low-energy computing","authors":"E. Debenedictis, M. Frank, N. Ganesh, N. Anderson","doi":"10.1109/ICRC.2016.7738677","DOIUrl":null,"url":null,"abstract":"At roughly kT energy dissipation per operation, the thermodynamic energy efficiency “limits” of Moore's Law were unimaginably far off in the 1960s. However, current computers operate at only 100-10,000 times this limit, forming an argument that historical rates of efficiency scaling must soon slow. This paper reviews the justification for the ~kT per operation limit in the context of processors for von Neumann-class computer architectures of the 1960s. We then reapply the fundamental arguments to contemporary applications and identify a new direction for future computing in which the ultimate efficiency limits would be much further out. New nanodevices with high-level functions that aggregate the functionality of several logic gates and some local memory may be the right building blocks for much more energy efficient execution of emerging applications-such as neural networks.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

At roughly kT energy dissipation per operation, the thermodynamic energy efficiency “limits” of Moore's Law were unimaginably far off in the 1960s. However, current computers operate at only 100-10,000 times this limit, forming an argument that historical rates of efficiency scaling must soon slow. This paper reviews the justification for the ~kT per operation limit in the context of processors for von Neumann-class computer architectures of the 1960s. We then reapply the fundamental arguments to contemporary applications and identify a new direction for future computing in which the ultimate efficiency limits would be much further out. New nanodevices with high-level functions that aggregate the functionality of several logic gates and some local memory may be the right building blocks for much more energy efficient execution of emerging applications-such as neural networks.
通往超低能耗计算的道路
在20世纪60年代,每次操作的能量耗散约为kT,摩尔定律的热力学能效“极限”是难以想象的遥远。然而,目前的计算机运行速度只有这个极限的100-10,000倍,这就形成了一种观点,即历史上的效率扩展速度很快就会放缓。本文回顾了在20世纪60年代冯·诺伊曼级计算机体系结构的处理器背景下,每次操作限制~kT的合理性。然后,我们将基本论点重新应用于当代应用,并确定未来计算的新方向,其中最终的效率限制将远远超出。具有高级功能的新型纳米器件,集合了几个逻辑门和一些本地存储器的功能,可能是更节能地执行新兴应用程序(如神经网络)的正确构建模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信