Nonparametric Multiple Comparison Test for Change-Point Detection in Big Data

D. Klyushin, K. Golubeva
{"title":"Nonparametric Multiple Comparison Test for Change-Point Detection in Big Data","authors":"D. Klyushin, K. Golubeva","doi":"10.1109/ATIT50783.2020.9349323","DOIUrl":null,"url":null,"abstract":"We offer a new effective tool for detection of change-points in tracking data (movement data, health rate data etc.). We developed a nonparametric test for homogeneity of data in two adjacent time intervals. In the context of Big Data and IoT it allows online analyzing data stream from sensor and recognizing significant deviations from the baseline. The significance level for the test is less than 0.05. Also, we provide the results of comparison of the test with well-known Kolmogorov–Smirnov test, the sign test, the Wilcoxon signed-rank test, and the Mann–Whitney test. The computational experiment has shown that the Klyushin–Petunin test based on p-statistics has very high robustness, specificity, and sensitivity, and is more universal than the Kolmogorov–Smirnov test, the sign test, the Wilcoxon signed-rank test, and the Mann–Whitney test.","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We offer a new effective tool for detection of change-points in tracking data (movement data, health rate data etc.). We developed a nonparametric test for homogeneity of data in two adjacent time intervals. In the context of Big Data and IoT it allows online analyzing data stream from sensor and recognizing significant deviations from the baseline. The significance level for the test is less than 0.05. Also, we provide the results of comparison of the test with well-known Kolmogorov–Smirnov test, the sign test, the Wilcoxon signed-rank test, and the Mann–Whitney test. The computational experiment has shown that the Klyushin–Petunin test based on p-statistics has very high robustness, specificity, and sensitivity, and is more universal than the Kolmogorov–Smirnov test, the sign test, the Wilcoxon signed-rank test, and the Mann–Whitney test.
大数据变化点检测的非参数多重比较检验
我们提供了一种新的有效工具来检测跟踪数据(运动数据、健康率数据等)的变化点。我们在两个相邻的时间间隔中对数据的同质性进行了非参数检验。在大数据和物联网的背景下,它允许在线分析来自传感器的数据流并识别与基线的重大偏差。检验的显著性水平小于0.05。并与著名的Kolmogorov-Smirnov检验、符号检验、Wilcoxon符号秩检验和Mann-Whitney检验进行了比较。计算实验表明,基于p统计量的Klyushin-Petunin检验具有非常高的稳健性、特异性和敏感性,比Kolmogorov-Smirnov检验、符号检验、Wilcoxon符号秩检验和Mann-Whitney检验更具普适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信