Overview of Machine Learning Approaches Applied in Disease Profiling

Ricardo Buettner, T. Kuri, Andreas Feist, Jannik Hudak
{"title":"Overview of Machine Learning Approaches Applied in Disease Profiling","authors":"Ricardo Buettner, T. Kuri, Andreas Feist, Jannik Hudak","doi":"10.1109/ISIEA49364.2020.9188140","DOIUrl":null,"url":null,"abstract":"We analyzed IEEE, ACM, SpringerLink and the AIS Basket of 8 for peer-reviewed articles related to machine learning-based disease profiling and built an overview of machine learning methods applied for disease profiling. It was found that machine learning methods are widely applied in disease profiling, especially in cancer diagnostics and heart disease profiling. There is also a shift from traditional approaches (support vector machines, decision trees) to modern convolutional neural networks.","PeriodicalId":120582,"journal":{"name":"2020 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA49364.2020.9188140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We analyzed IEEE, ACM, SpringerLink and the AIS Basket of 8 for peer-reviewed articles related to machine learning-based disease profiling and built an overview of machine learning methods applied for disease profiling. It was found that machine learning methods are widely applied in disease profiling, especially in cancer diagnostics and heart disease profiling. There is also a shift from traditional approaches (support vector machines, decision trees) to modern convolutional neural networks.
机器学习方法在疾病分析中的应用概述
我们分析了IEEE、ACM、SpringerLink和AIS Basket of 8中与基于机器学习的疾病分析相关的同行评议文章,并构建了用于疾病分析的机器学习方法的概述。研究发现,机器学习方法在疾病分析中有着广泛的应用,特别是在癌症诊断和心脏病分析中。从传统方法(支持向量机、决策树)到现代卷积神经网络也有转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信