Trees and forest. Recursive partitioning as an alternative to parametric regression models in social sciences

N. Robette
{"title":"Trees and forest. Recursive partitioning as an alternative to parametric regression models in social sciences","authors":"N. Robette","doi":"10.1177/07591063221128325","DOIUrl":null,"url":null,"abstract":"Arbres et forêt. Le partitionnement récursif comme alternative aux modèles de régression paramétriques dans les sciences sociales. Les modèles de régression paramétrique sont devenus l’outil dominant de la sociologie quantitative. Cette domination n’est pas sans poser problème et de nombreuses critiques ont été exprimées, tant sur le plan statistique qu’épistémologique. Pourtant, le développement de la fouille de données, puis de l’apprentissage automatique, a conduit à l’émergence d’approches méthodologiques permettant de surmonter la plupart des limites des modèles de régression paramétrique, pour les différents types d’utilisation qui intéressent les sciences sociales. Nous soutenons que le partitionnement récursif, en particulier, peut être très utile pour les sciences sociales. En effet, cette approche présente un certain nombre d’avantages techniques par rapport à la régression paramétrique et, surtout, elle est cohérente avec une conception des déterminations sociales en termes de configurations de facteurs interdépendants (et non d’additions de facteurs indépendants). Dans un deuxième temps, nous passons en revue une série d’outils permettant d’interpréter les résultats obtenus par les algorithmes de partitionnement récursif. Ensemble, ils forment une boîte à outils très complète pour les sciences sociales et montrent que le partitionnement récursif n’est plus une boîte noire dès lors que les outils d’interprétation appropriés sont mobilisés. Enfin, nous illustrons les méthodes présentées à l’aide d’exemples sociologiques sur le monde du cinéma. Ce faisant, nous montrons que ces méthodes permettent de traiter différents types de problèmes qui se posent en sciences sociales lorsque des régressions paramétriques sont habituellement utilisées, en l’occurrence l’étude des effets de structure et la hiérarchisation des facteurs explicatifs.","PeriodicalId":210053,"journal":{"name":"Bulletin de Méthodologie Sociologique","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de Méthodologie Sociologique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07591063221128325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arbres et forêt. Le partitionnement récursif comme alternative aux modèles de régression paramétriques dans les sciences sociales. Les modèles de régression paramétrique sont devenus l’outil dominant de la sociologie quantitative. Cette domination n’est pas sans poser problème et de nombreuses critiques ont été exprimées, tant sur le plan statistique qu’épistémologique. Pourtant, le développement de la fouille de données, puis de l’apprentissage automatique, a conduit à l’émergence d’approches méthodologiques permettant de surmonter la plupart des limites des modèles de régression paramétrique, pour les différents types d’utilisation qui intéressent les sciences sociales. Nous soutenons que le partitionnement récursif, en particulier, peut être très utile pour les sciences sociales. En effet, cette approche présente un certain nombre d’avantages techniques par rapport à la régression paramétrique et, surtout, elle est cohérente avec une conception des déterminations sociales en termes de configurations de facteurs interdépendants (et non d’additions de facteurs indépendants). Dans un deuxième temps, nous passons en revue une série d’outils permettant d’interpréter les résultats obtenus par les algorithmes de partitionnement récursif. Ensemble, ils forment une boîte à outils très complète pour les sciences sociales et montrent que le partitionnement récursif n’est plus une boîte noire dès lors que les outils d’interprétation appropriés sont mobilisés. Enfin, nous illustrons les méthodes présentées à l’aide d’exemples sociologiques sur le monde du cinéma. Ce faisant, nous montrons que ces méthodes permettent de traiter différents types de problèmes qui se posent en sciences sociales lorsque des régressions paramétriques sont habituellement utilisées, en l’occurrence l’étude des effets de structure et la hiérarchisation des facteurs explicatifs.
树木和森林。递归分割作为社会科学中参数回归模型的替代方法
树木和森林。递归划分在社会科学中作为参数回归模型的替代。参数回归模型已成为定量社会学的主要工具。这种主导地位并非没有问题,在统计和认识论方面都提出了许多批评。然而,数据挖掘和机器学习的发展导致了方法学方法的出现,这些方法克服了参数回归模型在社会科学中不同类型使用的大多数限制。我们认为递归划分尤其对社会科学非常有用。事实上,与参数回归相比,这种方法有许多技术上的优势,最重要的是,它符合社会决定的概念,即相互依赖的因素的配置(而不是独立因素的添加)。在第二步中,我们回顾了一系列用于解释递归分区算法结果的工具。它们共同构成了社会科学的一个非常全面的工具箱,并表明,一旦调动了适当的解释工具,递归划分就不再是一个黑盒子。最后,我们用电影世界的社会学例子来说明所提出的方法。通过这样做,我们表明这些方法可以处理社会科学中经常使用参数回归的不同类型的问题,在这种情况下,研究结构效应和解释因素的层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信