Real quantifier elimination by cylindrical algebraic decomposition, and improvements by machine learning

M. England
{"title":"Real quantifier elimination by cylindrical algebraic decomposition, and improvements by machine learning","authors":"M. England","doi":"10.1145/3373207.3403981","DOIUrl":null,"url":null,"abstract":"Given a quantified logical formula whose atoms are polynomial constraints with real valued variables, Real Quantifier Elimination (QE) means to derive a logically equivalent formula which does not involve quantifiers or the quantified variables from the original statement. For example, Real QE would reduce the statement that there exists a real solution x to the quadratic equation x2 + bx + c = 0 to the equivalent condition on the discriminant: b2 - 4c ≥ 0. Tarski proved Real QE is always possible (with sufficient resources) [7].","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3403981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a quantified logical formula whose atoms are polynomial constraints with real valued variables, Real Quantifier Elimination (QE) means to derive a logically equivalent formula which does not involve quantifiers or the quantified variables from the original statement. For example, Real QE would reduce the statement that there exists a real solution x to the quadratic equation x2 + bx + c = 0 to the equivalent condition on the discriminant: b2 - 4c ≥ 0. Tarski proved Real QE is always possible (with sufficient resources) [7].
圆柱代数分解的实量词消除,以及机器学习的改进
给定一个量化逻辑公式,其原子是具有实值变量的多项式约束,实量词消去(real Quantifier Elimination, QE)是指从原命题推导出一个不涉及量词或量化变量的逻辑等价公式。例如,Real QE会将二次方程x2 + bx + c = 0存在实解x的表述简化为对判别式的等价条件:b2 - 4c≥0。Tarski证明了真正的量化宽松总是可能的(在资源充足的情况下)[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信