{"title":"An Inexact Solution Approach for the Mathematical Program with Complementarity Constraints","authors":"H. Azizi, Abdeslam Kadrani","doi":"10.1109/ICOA49421.2020.9094474","DOIUrl":null,"url":null,"abstract":"We propose an approach based on a penalty formulation and a relaxation scheme for mathematical programs with complementarity constraints (MPCC). We discuss the convergence analysis with a new strong approximate stationarity concept. The convergence of the sequence of strong approximate stationary points, generated by solving a family of regularized-penalized sub-problems, is investigated. Under the MPCC-Mangasarian-Fromovitz constraint qualifications (MPCC-MFCQ), we show that any accumulation point of the sequence of strong approximate stationary points of regularized-penalized sub-problems is a M-stationary point of the original MPCC.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an approach based on a penalty formulation and a relaxation scheme for mathematical programs with complementarity constraints (MPCC). We discuss the convergence analysis with a new strong approximate stationarity concept. The convergence of the sequence of strong approximate stationary points, generated by solving a family of regularized-penalized sub-problems, is investigated. Under the MPCC-Mangasarian-Fromovitz constraint qualifications (MPCC-MFCQ), we show that any accumulation point of the sequence of strong approximate stationary points of regularized-penalized sub-problems is a M-stationary point of the original MPCC.