Real time expression recognition using correlation and support vector machine

Rahul Bhatia, S. Kapoor, S. Khanna
{"title":"Real time expression recognition using correlation and support vector machine","authors":"Rahul Bhatia, S. Kapoor, S. Khanna","doi":"10.1109/I-SOCIETY16502.2010.6018740","DOIUrl":null,"url":null,"abstract":"Facial expressions deliver rich information about human emotion and play an essential role in human communications. This paper presents a design and evaluation of a novel computational model that categorizes facial expressions in real time video for the reason of automating human computer interfaces. It highlights the main system components, methodology for the development of the prototype and some research challenges. The concepts of correlation have been used to detect the face in video sequences and multiclass SVM is used for classification. The method has been evaluated in terms of recognition accuracy using a well known Facial Expression database, Japanese Female Facial Expression database as well as using the database of face images of the authors. The experimental results show the effectiveness of our scheme.","PeriodicalId":407855,"journal":{"name":"2010 International Conference on Information Society","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SOCIETY16502.2010.6018740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facial expressions deliver rich information about human emotion and play an essential role in human communications. This paper presents a design and evaluation of a novel computational model that categorizes facial expressions in real time video for the reason of automating human computer interfaces. It highlights the main system components, methodology for the development of the prototype and some research challenges. The concepts of correlation have been used to detect the face in video sequences and multiclass SVM is used for classification. The method has been evaluated in terms of recognition accuracy using a well known Facial Expression database, Japanese Female Facial Expression database as well as using the database of face images of the authors. The experimental results show the effectiveness of our scheme.
基于相关和支持向量机的实时表情识别
面部表情传递着丰富的人类情感信息,在人类交流中发挥着重要作用。本文提出了一种基于人机界面自动化的实时视频面部表情分类计算模型的设计与评价。重点介绍了系统的主要组成部分、原型的开发方法和一些研究挑战。利用相关概念对视频序列中的人脸进行检测,并利用多类支持向量机进行分类。使用知名的面部表情数据库、日本女性面部表情数据库以及作者的面部图像数据库,对该方法的识别准确性进行了评估。实验结果表明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信