P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri
{"title":"Segmentation of neuron and measurement of optically programed neurite growth: Fast automation via Bayesian thresholding","authors":"P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri","doi":"10.1109/NER.2015.7146794","DOIUrl":null,"url":null,"abstract":"The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.