Transfer Learning for Channel Quality Prediction

Claudia Parera, A. Redondi, M. Cesana, Qi Liao, Ilaria Malanchini
{"title":"Transfer Learning for Channel Quality Prediction","authors":"Claudia Parera, A. Redondi, M. Cesana, Qi Liao, Ilaria Malanchini","doi":"10.1109/IWMN.2019.8805017","DOIUrl":null,"url":null,"abstract":"The ability to predict the quality of a wireless channel is essential for enabling anticipatory networking tasks. Traditional channel quality prediction problems encompass predicting future conditions based on past measurements of the same channel. In this paper we study the channel quality prediction problem across different wireless channels. To this extent, we consider a reference scenario including multiple 4G cells, each of which operates on multiple concurrent frequency carriers. We propose a framework based on transfer learning to predict the channel quality of a given frequency carrier when no or minimal information is available on the very same frequency carrier for model training. For the transfer learning task we use convolutional neural networks and long short-term memory networks. We compare their performance against statistical methods on a dataset collected from a commercial 4G mobile radio network. The performance evaluation carried out on the reference dataset demonstrates the validity of the proposed transfer learning approach, achieving a root mean squared error of 0.3 on average.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"16 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The ability to predict the quality of a wireless channel is essential for enabling anticipatory networking tasks. Traditional channel quality prediction problems encompass predicting future conditions based on past measurements of the same channel. In this paper we study the channel quality prediction problem across different wireless channels. To this extent, we consider a reference scenario including multiple 4G cells, each of which operates on multiple concurrent frequency carriers. We propose a framework based on transfer learning to predict the channel quality of a given frequency carrier when no or minimal information is available on the very same frequency carrier for model training. For the transfer learning task we use convolutional neural networks and long short-term memory networks. We compare their performance against statistical methods on a dataset collected from a commercial 4G mobile radio network. The performance evaluation carried out on the reference dataset demonstrates the validity of the proposed transfer learning approach, achieving a root mean squared error of 0.3 on average.
信道质量预测的迁移学习
预测无线信道质量的能力对于实现预期的网络任务至关重要。传统的信道质量预测问题包括基于过去对同一信道的测量来预测未来的条件。本文研究了跨不同无线信道的信道质量预测问题。在这种程度上,我们考虑了一个包括多个4G小区的参考场景,每个小区在多个并发频率载波上运行。我们提出了一个基于迁移学习的框架来预测给定频率载波的信道质量,当没有或只有很少的信息可用于模型训练的相同频率载波上。对于迁移学习任务,我们使用卷积神经网络和长短期记忆网络。我们将它们的性能与从商业4G移动无线网络收集的数据集上的统计方法进行了比较。在参考数据集上进行的性能评估证明了所提出的迁移学习方法的有效性,平均均方根误差为0.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信