Multimodal structure segmentation and analysis of music using audio and textual information

Heng Tze Cheng, Yi-Hsuan Yang, Yu-Ching Lin, Homer H. Chen
{"title":"Multimodal structure segmentation and analysis of music using audio and textual information","authors":"Heng Tze Cheng, Yi-Hsuan Yang, Yu-Ching Lin, Homer H. Chen","doi":"10.1109/ISCAS.2009.5118096","DOIUrl":null,"url":null,"abstract":"In this paper, we present a multimodal approach to structure segmentation of music with applications to audio content analysis and music information retrieval. In particular, since lyrics contain rich information about the semantic structure of a song, our approach incorporates lyrics to overcome the existing difficulties associated with large acoustic variation in music. We further design a constrained clustering algorithm for music segmentation and evaluate its performance on commercial recordings. Experimental results show that our method can effectively detect the boundaries and the types of semantic structure of music segments.","PeriodicalId":388394,"journal":{"name":"2009 IEEE International Symposium on Circuits and Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2009.5118096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we present a multimodal approach to structure segmentation of music with applications to audio content analysis and music information retrieval. In particular, since lyrics contain rich information about the semantic structure of a song, our approach incorporates lyrics to overcome the existing difficulties associated with large acoustic variation in music. We further design a constrained clustering algorithm for music segmentation and evaluate its performance on commercial recordings. Experimental results show that our method can effectively detect the boundaries and the types of semantic structure of music segments.
基于音频和文本信息的音乐多模态结构分割与分析
本文提出了一种多模态音乐结构分割方法,并将其应用于音频内容分析和音乐信息检索。特别是,由于歌词包含了关于歌曲语义结构的丰富信息,我们的方法结合歌词来克服与音乐中巨大的声学变化相关的现有困难。我们进一步设计了一种约束聚类算法用于音乐分割,并评估了其在商业录音上的性能。实验结果表明,该方法可以有效地检测音乐片段的语义结构边界和类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信