L. d'Oliveira, D. Flandre, M. Pavanello, M. de Souza
{"title":"Effect of high temperature on analog parameters of Asymmetric Self-Cascode SOI nMOSFETs","authors":"L. d'Oliveira, D. Flandre, M. Pavanello, M. de Souza","doi":"10.1109/SBMICRO.2014.6940135","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis on the high temperature operation of Silicon-on-Insulator (SOI) nMOSFETs in Asymmetric Self-Cascode (A-SC) configuration. For this analysis, experimental results in the range of 300K to 500K of A-SC structures with different channel lengths for both the drain side transistor (MD) and source side transistor (MS) are used. The effect of varying channel length under high temperatures on the A-SC association is evaluated using as figure of merit important analog parameters, such as the intrinsic voltage gain and transconductance over drain current ratio.","PeriodicalId":244987,"journal":{"name":"2014 29th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"51 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 29th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMICRO.2014.6940135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an analysis on the high temperature operation of Silicon-on-Insulator (SOI) nMOSFETs in Asymmetric Self-Cascode (A-SC) configuration. For this analysis, experimental results in the range of 300K to 500K of A-SC structures with different channel lengths for both the drain side transistor (MD) and source side transistor (MS) are used. The effect of varying channel length under high temperatures on the A-SC association is evaluated using as figure of merit important analog parameters, such as the intrinsic voltage gain and transconductance over drain current ratio.