Pattern Recognition of Human Activity Based on Smartphone Data Sensors Using SVM Multiclass

A. Alman, A. Lawi, Z. Tahir
{"title":"Pattern Recognition of Human Activity Based on Smartphone Data Sensors Using SVM Multiclass","authors":"A. Alman, A. Lawi, Z. Tahir","doi":"10.4108/eai.2-5-2019.2284606","DOIUrl":null,"url":null,"abstract":"Mobile devices are increasingly sophisticated while smartphones continue to make the latest generation that immerses the supporting tools needed in everyday life such as cameras, GPS, Microphones, and various sensors such as light sensors, a direction sensor, acceleration sensor (i.e., accelerometer) and the gyroscope sensor. This study aims to classify human activities from the accelerometer and gyroscope sensors on a Sony z3+ smartphone. To implement our system, we collect labeled accelerometer and gyroscope data from eight users when they carry out daily activity. Every activity was recorded for 22 seconds, total data that we use every activity is 2000 data with the total amount of data is 16000 data. This data we classify using the Multiclass Support Vector Machine (SVM) method reaches 97.40% accuracy using a 70% ratio as training data and 30% as test data, the classification process takes 5 seconds to classify the data.","PeriodicalId":355290,"journal":{"name":"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.2-5-2019.2284606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile devices are increasingly sophisticated while smartphones continue to make the latest generation that immerses the supporting tools needed in everyday life such as cameras, GPS, Microphones, and various sensors such as light sensors, a direction sensor, acceleration sensor (i.e., accelerometer) and the gyroscope sensor. This study aims to classify human activities from the accelerometer and gyroscope sensors on a Sony z3+ smartphone. To implement our system, we collect labeled accelerometer and gyroscope data from eight users when they carry out daily activity. Every activity was recorded for 22 seconds, total data that we use every activity is 2000 data with the total amount of data is 16000 data. This data we classify using the Multiclass Support Vector Machine (SVM) method reaches 97.40% accuracy using a 70% ratio as training data and 30% as test data, the classification process takes 5 seconds to classify the data.
基于智能手机数据传感器的SVM多类人体活动模式识别
移动设备越来越复杂,而智能手机继续制造最新一代,沉浸在日常生活中所需的支持工具,如相机,GPS,麦克风和各种传感器,如光传感器,方向传感器,加速度传感器(即加速度计)和陀螺仪传感器。本研究旨在从索尼z3+智能手机上的加速度计和陀螺仪传感器对人类活动进行分类。为了实现我们的系统,我们收集了八个用户进行日常活动时标记的加速度计和陀螺仪数据。每个活动记录22秒,我们使用的总数据每个活动是2000个数据,总数据量是16000个数据。我们使用多类支持向量机(Multiclass Support Vector Machine, SVM)方法对该数据进行分类,以70%的比例作为训练数据,30%的比例作为测试数据,准确率达到97.40%,分类过程耗时5秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信