Геометричні структури на орбітах петлевих груп дифеоморфізмів та асоційовані інтегровні гамільтонові системи ,,небесного” типу. І

O. Hentosh, Ya. A. Prykarpatskyy, A. A. Balinsky, A. K. Prykarpatski
{"title":"Геометричні структури на орбітах петлевих груп дифеоморфізмів та асоційовані інтегровні гамільтонові системи ,,небесного” типу. І","authors":"O. Hentosh, Ya. A. Prykarpatskyy, A. A. Balinsky, A. K. Prykarpatski","doi":"10.37863/umzh.v74i8.6614","DOIUrl":null,"url":null,"abstract":"УДК 517.9Наведено огляд диференцiально-геометричних i Лi-алгебраїчних пiдходiв до вивчення широкого класу нелiнiйних iнтегровних диференцiальних систем „небесного” типу, асоцiйованих iз гамiльтоновими потоками на спряжених просторах до петельних алгебр Лi векторних полiв на торах. Цi потоки породжуються вiдповiдними орбiтами коприєднаної дiї петельної групи дифеоморфiзмiв i задовольняють векторно-польовi умови сумiсностi типу Лакса – Сато. Проаналiзовано вiдповiднi iєрархiї законiв збереження i їхнiй зв’язок з iнварiантами Казимiра. Розглянуто типовi приклади таких систем i встановлено їхню повну iнтегровнiсть за допомогою розвиненої Лi-алгебраїчної конструкцiї. Описано новi узагальнення iнтегровних бездисперсiйних систем „небесного” типу, для яких вiдповiднi породжуючi елементи орбiт мають факторизовану структуру, що допускає їх розширення на багатовимiрний випадок.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/umzh.v74i8.6614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

УДК 517.9Наведено огляд диференцiально-геометричних i Лi-алгебраїчних пiдходiв до вивчення широкого класу нелiнiйних iнтегровних диференцiальних систем „небесного” типу, асоцiйованих iз гамiльтоновими потоками на спряжених просторах до петельних алгебр Лi векторних полiв на торах. Цi потоки породжуються вiдповiдними орбiтами коприєднаної дiї петельної групи дифеоморфiзмiв i задовольняють векторно-польовi умови сумiсностi типу Лакса – Сато. Проаналiзовано вiдповiднi iєрархiї законiв збереження i їхнiй зв’язок з iнварiантами Казимiра. Розглянуто типовi приклади таких систем i встановлено їхню повну iнтегровнiсть за допомогою розвиненої Лi-алгебраїчної конструкцiї. Описано новi узагальнення iнтегровних бездисперсiйних систем „небесного” типу, для яких вiдповiднi породжуючi елементи орбiт мають факторизовану структуру, що допускає їх розширення на багатовимiрний випадок.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信