Combining a volatile and nonvolatile memristor in artificial synapse to improve learning in Spiking Neural Networks

Mahyar Shahsavari, Pierre Falez, Pierre Boulet
{"title":"Combining a volatile and nonvolatile memristor in artificial synapse to improve learning in Spiking Neural Networks","authors":"Mahyar Shahsavari, Pierre Falez, Pierre Boulet","doi":"10.1145/2950067.2950090","DOIUrl":null,"url":null,"abstract":"With the end of Moore's law in sight, we need new computing architectures to satisfy the increasing demands of big data processing. Neuromorphic architectures are good candidates to low energy computing for recognition and classification tasks. We propose an event-based spiking neural network architecture based on artificial synapses. We introduce a novel synapse box that is able to forget and remember by inspiration from biological synapses. Two different volatile and nonvolatile memristor devices are combined in the synapse box. To evaluate the effectiveness of our proposal, we use system-level simulation in our Neural Network Scalable Spiking Simulator (N2S3) using the MNIST handwritten digit recognition dataset. The first results show better performance of our novel synapse than the traditional nonvolatile artificial synapses.","PeriodicalId":213559,"journal":{"name":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950067.2950090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

With the end of Moore's law in sight, we need new computing architectures to satisfy the increasing demands of big data processing. Neuromorphic architectures are good candidates to low energy computing for recognition and classification tasks. We propose an event-based spiking neural network architecture based on artificial synapses. We introduce a novel synapse box that is able to forget and remember by inspiration from biological synapses. Two different volatile and nonvolatile memristor devices are combined in the synapse box. To evaluate the effectiveness of our proposal, we use system-level simulation in our Neural Network Scalable Spiking Simulator (N2S3) using the MNIST handwritten digit recognition dataset. The first results show better performance of our novel synapse than the traditional nonvolatile artificial synapses.
结合易失性与非易失性记忆电阻器在人工突触中改善脉冲神经网络的学习
随着摩尔定律的终结,我们需要新的计算架构来满足日益增长的大数据处理需求。神经形态架构是识别和分类任务的低能耗计算的良好候选。提出了一种基于人工突触的基于事件的脉冲神经网络结构。我们介绍了一种新颖的突触盒,它能够从生物突触中获得灵感来遗忘和记忆。两种不同的易失性和非易失性忆阻器器件组合在突触盒中。为了评估我们建议的有效性,我们使用MNIST手写数字识别数据集在我们的神经网络可扩展峰值模拟器(N2S3)中使用系统级仿真。第一个结果表明,我们的新突触比传统的非易失性人工突触性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信