{"title":"Фракталы Рози и их теоретико-числовые приложения","authors":"Шутов Антон Владимирович","doi":"10.36535/0233-6723-2019-166-110-119","DOIUrl":null,"url":null,"abstract":"В работе построены и изучены разбиения Рози порядка $n$ для некоторого класса чисел Пизо. Данные разбиения представляют собой разбиения тора на фрактальные множества. При этом действие некоторого сдвига тора на введенных разбиениях сводится к перекладыванию тайлов разбиений. Получен ряд приложений введенных разбиений к изучению соответствующего сдвига тора. В частности, показано, что тайлы разбиения оказываются множествами ограниченного остатка относительно рассматриваемого сдвига. Кроме того, получен ряд приложений к изучению множеств натуральных чисел, имеющих заданное окончание жадного разложения по линейной рекуррентной последовательности, и к обобщенным круговым умножениям Кнута - Матиясевича.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2019-166-110-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
В работе построены и изучены разбиения Рози порядка $n$ для некоторого класса чисел Пизо. Данные разбиения представляют собой разбиения тора на фрактальные множества. При этом действие некоторого сдвига тора на введенных разбиениях сводится к перекладыванию тайлов разбиений. Получен ряд приложений введенных разбиений к изучению соответствующего сдвига тора. В частности, показано, что тайлы разбиения оказываются множествами ограниченного остатка относительно рассматриваемого сдвига. Кроме того, получен ряд приложений к изучению множеств натуральных чисел, имеющих заданное окончание жадного разложения по линейной рекуррентной последовательности, и к обобщенным круговым умножениям Кнута - Матиясевича.