Laplacian Eigenmaps Latent Variable Model modification for pattern recognition

S. Keyhanian, B. Nasersharif
{"title":"Laplacian Eigenmaps Latent Variable Model modification for pattern recognition","authors":"S. Keyhanian, B. Nasersharif","doi":"10.1109/IRANIANCEE.2015.7146298","DOIUrl":null,"url":null,"abstract":"Laplacian Eigenmaps Latent Variable Model (LELVM) is a probabilistic dimensionality reduction model that combines the advantages of latent variable models and observed variables, applied to many practical problems such as pattern recognition. Non-linear dimensionality reduction techniques are affected by two critical aspects: (1) the design of the adjacency graphs, and (2) the embedding of new test data - the out-of-sample problem. For the first aspect, we modify graph construction by changing LE objective function. We add an entropy term to LE objective function. In this way, we obtain a principled edge weight updating formula which naturally corresponds to classical heat kernel weights. For the second aspect, we use the sparse representation approach as a solution to the `out-of-sample' problem. The proposed method is simple, non-parametric and computationally inexpensive. Experimental result on UCI datasets using different classifiers show the feasibility and effectiveness of the proposed method in comparison to conventional LELVM for the classification.","PeriodicalId":187121,"journal":{"name":"2015 23rd Iranian Conference on Electrical Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2015.7146298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Laplacian Eigenmaps Latent Variable Model (LELVM) is a probabilistic dimensionality reduction model that combines the advantages of latent variable models and observed variables, applied to many practical problems such as pattern recognition. Non-linear dimensionality reduction techniques are affected by two critical aspects: (1) the design of the adjacency graphs, and (2) the embedding of new test data - the out-of-sample problem. For the first aspect, we modify graph construction by changing LE objective function. We add an entropy term to LE objective function. In this way, we obtain a principled edge weight updating formula which naturally corresponds to classical heat kernel weights. For the second aspect, we use the sparse representation approach as a solution to the `out-of-sample' problem. The proposed method is simple, non-parametric and computationally inexpensive. Experimental result on UCI datasets using different classifiers show the feasibility and effectiveness of the proposed method in comparison to conventional LELVM for the classification.
用于模式识别的拉普拉斯特征映射潜变量模型修正
拉普拉斯特征映射潜变量模型(Laplacian Eigenmaps Latent Variable Model, LELVM)是一种结合了潜变量模型和观测变量优点的概率降维模型,应用于模式识别等许多实际问题。非线性降维技术受到两个关键方面的影响:(1)邻接图的设计;(2)新测试数据的嵌入——样本外问题。对于第一个方面,我们通过改变LE目标函数来修改图的构造。在LE目标函数中加入熵项。这样,我们得到了一个原则性的边权更新公式,它自然地对应于经典的热核权值。对于第二个方面,我们使用稀疏表示方法作为“样本外”问题的解决方案。该方法简单、无参数、计算成本低。在不同分类器的UCI数据集上的实验结果表明,与传统的LELVM分类方法相比,该方法具有可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信