An Efficient Class-incremental Learning Strategy with Frozen Weights and Pseudo Exemplars

Been-Chian Chien, Yueh-Chia Hsu, T. Hong
{"title":"An Efficient Class-incremental Learning Strategy with Frozen Weights and Pseudo Exemplars","authors":"Been-Chian Chien, Yueh-Chia Hsu, T. Hong","doi":"10.1145/3504006.3504023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel and efficient class-incremental learning approach that does not necessitate the storage of old data after training each task. The proposed approach uses the autoencoder's decoder to generate pseudo data to consolidate the model and sets a subset of relevant weights in the encoder layers to learn new knowledge while freezing most weights. It uses no extra storage space to save old data. The experimental results also show the performance of the proposed approach.","PeriodicalId":296534,"journal":{"name":"Proceedings of the 8th Multidisciplinary International Social Networks Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Multidisciplinary International Social Networks Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3504006.3504023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel and efficient class-incremental learning approach that does not necessitate the storage of old data after training each task. The proposed approach uses the autoencoder's decoder to generate pseudo data to consolidate the model and sets a subset of relevant weights in the encoder layers to learn new knowledge while freezing most weights. It uses no extra storage space to save old data. The experimental results also show the performance of the proposed approach.
具有固定权值和伪样例的有效类增量学习策略
在本文中,我们提出了一种新颖有效的类增量学习方法,该方法不需要在训练每个任务后存储旧数据。该方法利用自编码器的解码器生成伪数据来整合模型,并在编码器层中设置一个相关权重子集来学习新知识,同时冻结大多数权重。它不需要额外的存储空间来保存旧数据。实验结果也证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信