A Proportionate NLMS Algorithm for the Identification of Sparse Bilinear Forms

C. Paleologu, J. Benesty, Camelia Elisei-Iliescu, C. Stanciu, C. Anghel, S. Ciochină
{"title":"A Proportionate NLMS Algorithm for the Identification of Sparse Bilinear Forms","authors":"C. Paleologu, J. Benesty, Camelia Elisei-Iliescu, C. Stanciu, C. Anghel, S. Ciochină","doi":"10.1109/TSP.2018.8441255","DOIUrl":null,"url":null,"abstract":"Proportionate-type algorithms are designed to exploit the sparseness character of the systems to be identified, in order to improve the overall convergence of the adaptive filters used in this context. However, when the parameter space is large, the system identification problem becomes more challenging. In this paper, we focus on the identification of bilinear forms, where the bilinear term is defined with respect to the impulse responses of a spatiotemporal model. In this framework, we develop a proportionate normalized least-mean-square algorithm tailored for the identification of such bilinear forms. Simulation results indicate the good performance of the proposed algorithm, in terms of both convergence rate and computational complexity.","PeriodicalId":383018,"journal":{"name":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 41st International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2018.8441255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Proportionate-type algorithms are designed to exploit the sparseness character of the systems to be identified, in order to improve the overall convergence of the adaptive filters used in this context. However, when the parameter space is large, the system identification problem becomes more challenging. In this paper, we focus on the identification of bilinear forms, where the bilinear term is defined with respect to the impulse responses of a spatiotemporal model. In this framework, we develop a proportionate normalized least-mean-square algorithm tailored for the identification of such bilinear forms. Simulation results indicate the good performance of the proposed algorithm, in terms of both convergence rate and computational complexity.
稀疏双线性形式识别的比例NLMS算法
比例型算法旨在利用待识别系统的稀疏性,以提高在这种情况下使用的自适应滤波器的整体收敛性。然而,当参数空间较大时,系统辨识问题就变得更具挑战性。在本文中,我们着重于双线性形式的识别,其中双线性项是根据时空模型的脉冲响应来定义的。在这个框架中,我们开发了一个比例归一化最小均方算法,专门用于识别这种双线性形式。仿真结果表明,该算法在收敛速度和计算复杂度方面都具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信