Application of an approximate model predictive control scheme on an unmanned aerial vehicle

M. Hofer, Michael Muehlebach, R. D’Andrea
{"title":"Application of an approximate model predictive control scheme on an unmanned aerial vehicle","authors":"M. Hofer, Michael Muehlebach, R. D’Andrea","doi":"10.1109/ICRA.2016.7487459","DOIUrl":null,"url":null,"abstract":"An approximate model predictive control approach is applied on an unmanned aerial vehicle with limited computational resources. A novel method using a continuous time parametrization of the state and input trajectory is used to derive a compact description of the optimal control problem. Different first order methods for the online optimization are discussed in terms of memory requirements and execution time. The generalized fast dual gradient method is implemented on the aerial vehicle. The approximate model predictive control algorithm runs on an embedded platform with a STM32 Cortex M4 processor. Simulation studies show that the model predictive controller outperforms a linear quadratic regulator in aggressive maneuvers. The model predictive control approach is evaluated in practice and shown to yield satisfactory flight behavior.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

An approximate model predictive control approach is applied on an unmanned aerial vehicle with limited computational resources. A novel method using a continuous time parametrization of the state and input trajectory is used to derive a compact description of the optimal control problem. Different first order methods for the online optimization are discussed in terms of memory requirements and execution time. The generalized fast dual gradient method is implemented on the aerial vehicle. The approximate model predictive control algorithm runs on an embedded platform with a STM32 Cortex M4 processor. Simulation studies show that the model predictive controller outperforms a linear quadratic regulator in aggressive maneuvers. The model predictive control approach is evaluated in practice and shown to yield satisfactory flight behavior.
一种近似模型预测控制方案在无人机上的应用
针对计算资源有限的无人机,提出一种近似模型预测控制方法。采用连续时间参数化状态和输入轨迹的新方法,推导出最优控制问题的简洁描述。从内存需求和执行时间的角度讨论了在线优化的不同一阶方法。在飞行器上实现了广义快速对偶梯度法。近似模型预测控制算法在STM32 Cortex M4处理器的嵌入式平台上运行。仿真研究表明,该模型预测控制器在侵略性机动中优于线性二次型调节器。在实践中对模型预测控制方法进行了评价,结果表明该方法具有令人满意的飞行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信