{"title":"Near-optimal, dynamic module reconfiguration in a photovoltaic system to combat partial shading effects","authors":"X. Lin, Yanzhi Wang, Siyu Yue, Donghwa Shin, N. Chang, Massoud Pedram","doi":"10.1145/2228360.2228452","DOIUrl":null,"url":null,"abstract":"Partial shading is a serious obstacle to effective utilization of photovoltaic (PV) systems since it can result in significant output power degradation for the system. A PV system is organized as a series connection of PV modules, each module comprising of a number of series-parallel connected cells. This paper presents modified PV cell structures with integrated switches, imbalanced cell connection topologies for PV modules, and a dynamic programming algorithm to produce near-optimal reconfigurations of each PV module with the goal of maximizing the system output power level under any partial shading patterns. Through simulations, we have demonstrated up to a factor of 2.3X improvement in the output power level of a PV system comprised of 3 PV modules with 60 PV cells per module.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Partial shading is a serious obstacle to effective utilization of photovoltaic (PV) systems since it can result in significant output power degradation for the system. A PV system is organized as a series connection of PV modules, each module comprising of a number of series-parallel connected cells. This paper presents modified PV cell structures with integrated switches, imbalanced cell connection topologies for PV modules, and a dynamic programming algorithm to produce near-optimal reconfigurations of each PV module with the goal of maximizing the system output power level under any partial shading patterns. Through simulations, we have demonstrated up to a factor of 2.3X improvement in the output power level of a PV system comprised of 3 PV modules with 60 PV cells per module.