Deep supervised learning to estimate true rough line images from SEM images

N. Chaudhary, S. Savari, S. S. Yeddulapalli
{"title":"Deep supervised learning to estimate true rough line images from SEM images","authors":"N. Chaudhary, S. Savari, S. S. Yeddulapalli","doi":"10.1117/12.2324341","DOIUrl":null,"url":null,"abstract":"We use deep supervised learning for the Poisson denoising of low-dose scanning electron microscope (SEM) images as a step in the estimation of line edge roughness (LER) and line width roughness (LWR). Our denoising algorithm applies a deep convolutional neural network called SEMNet with 17 convolutional, 16 batch-normalization and 16 dropout layers to noisy images. We trained and tested SEMNet with a dataset of 100800 simulated SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. SEMNet achieved considerable improvements in peak signal-to-noise ratio (PSNR) as well as the best LER/LWR estimation accuracy compared with standard image denoisers.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"48 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2324341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We use deep supervised learning for the Poisson denoising of low-dose scanning electron microscope (SEM) images as a step in the estimation of line edge roughness (LER) and line width roughness (LWR). Our denoising algorithm applies a deep convolutional neural network called SEMNet with 17 convolutional, 16 batch-normalization and 16 dropout layers to noisy images. We trained and tested SEMNet with a dataset of 100800 simulated SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. SEMNet achieved considerable improvements in peak signal-to-noise ratio (PSNR) as well as the best LER/LWR estimation accuracy compared with standard image denoisers.
从扫描电镜图像中估计真实粗线图像的深度监督学习
我们将深度监督学习用于低剂量扫描电子显微镜(SEM)图像的泊松去噪,作为估计线边缘粗糙度(LER)和线宽度粗糙度(LWR)的一步。我们的去噪算法应用了一个名为SEMNet的深度卷积神经网络,该网络具有17个卷积层,16个批处理归一化层和16个dropout层。我们使用由Thorsos方法和美国国家标准与技术研究所开发的ARTIMAGEN库构建的100800张模拟SEM粗线图像数据集对SEMNet进行了训练和测试。与标准图像去噪器相比,SEMNet在峰值信噪比(PSNR)以及LER/LWR估计精度方面取得了相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信