{"title":"Decision-Making Strategy Using Multi-Agent Reinforcement Learning for Platoon Formation in Agreement-Seeking Cooperation","authors":"Eunjeong Hyeon, D. Karbowski, A. Rousseau","doi":"10.1109/IV55152.2023.10186813","DOIUrl":null,"url":null,"abstract":"Among the four classes of cooperative driving automation defined in [1], agreement-seeking cooperation appears to be a promising option for achieving higher cooperation levels with general passenger vehicles. Because agreement-seeking cooperation allows connected and automated vehicles (CAVs) to decide whether or not to participate in cooperative driving, it is necessary for CAVs to have intelligent decision-making strategies. This work develops a farsighted, interaction-aware decision-making strategy using multi-agent reinforcement learning (MARL). A MARL system is formulated with unique state and action spaces reflecting agreement-seeking interactions. A state–action–reward–state–action (SARSA) algorithm is applied to learn the action-value function of each CAV. Simulation results show that using a MARL-based decision-making strategy increases agreement rates by 52% on average and cooperation time by 50%. The higher cooperation rates lead to higher energy efficiency: 5.5% more energy saving than heuristic decision-making.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Among the four classes of cooperative driving automation defined in [1], agreement-seeking cooperation appears to be a promising option for achieving higher cooperation levels with general passenger vehicles. Because agreement-seeking cooperation allows connected and automated vehicles (CAVs) to decide whether or not to participate in cooperative driving, it is necessary for CAVs to have intelligent decision-making strategies. This work develops a farsighted, interaction-aware decision-making strategy using multi-agent reinforcement learning (MARL). A MARL system is formulated with unique state and action spaces reflecting agreement-seeking interactions. A state–action–reward–state–action (SARSA) algorithm is applied to learn the action-value function of each CAV. Simulation results show that using a MARL-based decision-making strategy increases agreement rates by 52% on average and cooperation time by 50%. The higher cooperation rates lead to higher energy efficiency: 5.5% more energy saving than heuristic decision-making.