A Hierarchy-Based Method for Synthesizing Frequent Itemsets Extracted from Temporal Windows

Y. Pitarch, Anne Laurent, P. Poncelet
{"title":"A Hierarchy-Based Method for Synthesizing Frequent Itemsets Extracted from Temporal Windows","authors":"Y. Pitarch, Anne Laurent, P. Poncelet","doi":"10.1109/SoCPaR.2009.38","DOIUrl":null,"url":null,"abstract":"With the rapid development of information technology, many applications have to deal with potentially infinite data streams. In such a dynamic context, storing the whole data stream history is unfeasible and providing a high-quality summary is required for decision makers. A practical and consistent summarization method is the extraction of the frequent itemsets over temporal windows. Nevertheless, this method suffers from a critical drawback: results pile up quickly making the analysis either uncomfortable or impossible for users. In this paper, we propose to unify these results thanks to a synthesis method for multidimensional frequent itemsets based on a graph structure and taking advantage of the data hierarchies. We overcome a major drawback of the Tilted Time Window (TTW) standard framework by taking into account the data distribution. Experiments conducted on both synthetic and real datasets show that our approach can be applied to data streams.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of information technology, many applications have to deal with potentially infinite data streams. In such a dynamic context, storing the whole data stream history is unfeasible and providing a high-quality summary is required for decision makers. A practical and consistent summarization method is the extraction of the frequent itemsets over temporal windows. Nevertheless, this method suffers from a critical drawback: results pile up quickly making the analysis either uncomfortable or impossible for users. In this paper, we propose to unify these results thanks to a synthesis method for multidimensional frequent itemsets based on a graph structure and taking advantage of the data hierarchies. We overcome a major drawback of the Tilted Time Window (TTW) standard framework by taking into account the data distribution. Experiments conducted on both synthetic and real datasets show that our approach can be applied to data streams.
基于层次的时间窗频繁项集合成方法
随着信息技术的快速发展,许多应用程序必须处理潜在的无限数据流。在这样的动态环境中,存储整个数据流历史是不可行的,需要为决策者提供高质量的摘要。一种实用且一致的摘要方法是在时间窗口上提取频繁项集。然而,这种方法有一个严重的缺点:结果很快就会堆积起来,使得用户要么不舒服,要么不可能进行分析。在本文中,我们提出了一种基于图结构并利用数据层次结构的多维频繁项集综合方法来统一这些结果。通过考虑数据分布,我们克服了倾斜时间窗(TTW)标准框架的一个主要缺点。在合成数据集和真实数据集上进行的实验表明,我们的方法可以应用于数据流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信