Approximate Bayesian filtering using stabilized forgetting

S. Azizi, A. Quinn
{"title":"Approximate Bayesian filtering using stabilized forgetting","authors":"S. Azizi, A. Quinn","doi":"10.1109/EUSIPCO.2015.7362877","DOIUrl":null,"url":null,"abstract":"In this paper, we relax the modeling assumptions under which Bayesian filtering is tractable. In order to restore tractability, we adopt the stabilizing forgetting (SF) operator, which replaces the explicit time evolution model of Bayesian filtering. The principal contribution of the paper is to define a rich class of conditional observation models for which recursive, invariant, finite-dimensional statistics result from SF-based Bayesian filtering. We specialize the result to the mixture Kalman filter, verifying that the exact solution is available in this case. This allows us to consider the quality of the SF-based approximate solution. Finally, we assess SF-based tracking of the time-varying rate parameter (state) in data modelled as a mixture of exponential components.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"577 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we relax the modeling assumptions under which Bayesian filtering is tractable. In order to restore tractability, we adopt the stabilizing forgetting (SF) operator, which replaces the explicit time evolution model of Bayesian filtering. The principal contribution of the paper is to define a rich class of conditional observation models for which recursive, invariant, finite-dimensional statistics result from SF-based Bayesian filtering. We specialize the result to the mixture Kalman filter, verifying that the exact solution is available in this case. This allows us to consider the quality of the SF-based approximate solution. Finally, we assess SF-based tracking of the time-varying rate parameter (state) in data modelled as a mixture of exponential components.
使用稳定遗忘的近似贝叶斯滤波
在本文中,我们放宽了贝叶斯滤波易于处理的建模假设。为了恢复可跟踪性,我们采用稳定化遗忘(SF)算子取代贝叶斯滤波的显式时间演化模型。本文的主要贡献是定义了一类丰富的条件观测模型,这些模型的递归、不变、有限维统计结果来自基于sf的贝叶斯滤波。我们将结果专门化到混合卡尔曼滤波器,验证了在这种情况下的精确解是可用的。这允许我们考虑基于sf的近似解的质量。最后,我们评估了基于sf的跟踪时变速率参数(状态)的数据建模为指数成分的混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信