Misspecification and Heterogeneity in Single-Index, Binary Choice Models

Pian Chen, M. Velamuri
{"title":"Misspecification and Heterogeneity in Single-Index, Binary Choice Models","authors":"Pian Chen, M. Velamuri","doi":"10.2139/ssrn.1393062","DOIUrl":null,"url":null,"abstract":"We propose a nonparametric approach for estimating single-index, binary-choice models when parametric models such as Probit and Logit are potentially misspecified. The new approach involves two steps: first, we estimate index coefficients using sliced inverse regression without specifying a parametric probability function a priori; second, we estimate the unknown probability function using kernel regression of the binary choice variable on the single index estimated in the first step. The estimated probability functions for different demographic groups indicate that the conventional dummy variable approach cannot fully capture heterogeneous effects across groups. Using both simulated and labor market data, we demonstrate the merits of this new approach in solving model misspecification and heterogeneity problems.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1393062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a nonparametric approach for estimating single-index, binary-choice models when parametric models such as Probit and Logit are potentially misspecified. The new approach involves two steps: first, we estimate index coefficients using sliced inverse regression without specifying a parametric probability function a priori; second, we estimate the unknown probability function using kernel regression of the binary choice variable on the single index estimated in the first step. The estimated probability functions for different demographic groups indicate that the conventional dummy variable approach cannot fully capture heterogeneous effects across groups. Using both simulated and labor market data, we demonstrate the merits of this new approach in solving model misspecification and heterogeneity problems.
单指标二元选择模型的错定性和异质性
当参数模型如Probit和Logit可能被错误指定时,我们提出了一种非参数方法来估计单指标二元选择模型。新方法包括两个步骤:首先,我们使用切片逆回归估计指标系数,而不指定先验的参数概率函数;其次,我们使用二元选择变量的核回归对第一步估计的单个指标估计未知概率函数。不同人口统计群体的估计概率函数表明,传统的虚拟变量方法不能完全捕获群体间的异质效应。使用模拟和劳动力市场数据,我们证明了这种新方法在解决模型错误规范和异质性问题方面的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信