A novel heat sink design for low speed flows-a BGA example

B. Tavassoli
{"title":"A novel heat sink design for low speed flows-a BGA example","authors":"B. Tavassoli","doi":"10.1109/ITHERM.2000.866164","DOIUrl":null,"url":null,"abstract":"The ongoing trend in designing electronic systems is to incorporate increased functionality into ever smaller form factors. In addition, the power dissipation from most IC devices continues to increase. Additional design constraints, such as reducing system acoustic noise and weight, are also becoming more prevalent. The combined effect of all these trends is to create increasingly challenging thermal management situations that demand more efficient heat sinks and optimized designs. In this paper a new class of heat sinks are presented and their performance is compared to Airflow conventional heat sinks. MaxiFlow/sup TM/ heat sinks feature very thin, high ratio fins that radiate at various angles from the base. The result is a very low resistance to airflow and very high efficiency of heat dissipation, especially at low airspeeds. They are also very light in weight, allowing for simple attachment methods and weight savings. To aid in designing thermal solutions that utilize these heat sinks, an analytical model has been developed to predict the thermal resistance as a function of airflow velocity for unducted flow for a conventional design. The improvements of the new design compared to the conventional design will be discussed.","PeriodicalId":201262,"journal":{"name":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2000.866164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The ongoing trend in designing electronic systems is to incorporate increased functionality into ever smaller form factors. In addition, the power dissipation from most IC devices continues to increase. Additional design constraints, such as reducing system acoustic noise and weight, are also becoming more prevalent. The combined effect of all these trends is to create increasingly challenging thermal management situations that demand more efficient heat sinks and optimized designs. In this paper a new class of heat sinks are presented and their performance is compared to Airflow conventional heat sinks. MaxiFlow/sup TM/ heat sinks feature very thin, high ratio fins that radiate at various angles from the base. The result is a very low resistance to airflow and very high efficiency of heat dissipation, especially at low airspeeds. They are also very light in weight, allowing for simple attachment methods and weight savings. To aid in designing thermal solutions that utilize these heat sinks, an analytical model has been developed to predict the thermal resistance as a function of airflow velocity for unducted flow for a conventional design. The improvements of the new design compared to the conventional design will be discussed.
一种用于低速流的新型散热器设计-以BGA为例
设计电子系统的持续趋势是将越来越多的功能整合到越来越小的外形中。此外,大多数IC器件的功耗持续增加。其他设计限制,如降低系统噪音和重量,也变得越来越普遍。所有这些趋势的综合影响是创造越来越具有挑战性的热管理情况,需要更高效的散热器和优化设计。本文介绍了一种新型散热片,并与传统的气流散热片进行了性能比较。MaxiFlow/sup TM/散热器的特点是非常薄,高比率的鳍片从底部以不同角度辐射。其结果是一个非常低的阻力气流和非常高的散热效率,特别是在低空速。它们的重量也很轻,允许简单的连接方法和重量节省。为了帮助设计利用这些散热器的热解决方案,已经开发了一个分析模型来预测传统设计中导流的热阻作为气流速度的函数。与传统设计相比,新设计的改进将被讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信