Simulation of long-term Heart Rate Variability records with Gaussian distribution functions

G. Georgieva-Tsaneva
{"title":"Simulation of long-term Heart Rate Variability records with Gaussian distribution functions","authors":"G. Georgieva-Tsaneva","doi":"10.1145/3472410.3472439","DOIUrl":null,"url":null,"abstract":"The work presents an algorithm for mathematical modeling long-term Heart Rate Variability data using Gaussian distribution functions. The representation of the cardiac series in time domain is performed using an inverse wavelet transform. The transform is implemented with different Daubechies wavelet bases and is compared with the implementation of the algorithm with the classical Fourier transform. The created time sequences are analyzed in terms of the wavelet bases (Db4, Db6, Db8, Db12, Db20) used and the required CPU time for implementation of the program procedure. The obtained results show higher IT efficiency of the presented algorithm, realized with Daubechies transform.","PeriodicalId":115575,"journal":{"name":"Proceedings of the 22nd International Conference on Computer Systems and Technologies","volume":"83 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472410.3472439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The work presents an algorithm for mathematical modeling long-term Heart Rate Variability data using Gaussian distribution functions. The representation of the cardiac series in time domain is performed using an inverse wavelet transform. The transform is implemented with different Daubechies wavelet bases and is compared with the implementation of the algorithm with the classical Fourier transform. The created time sequences are analyzed in terms of the wavelet bases (Db4, Db6, Db8, Db12, Db20) used and the required CPU time for implementation of the program procedure. The obtained results show higher IT efficiency of the presented algorithm, realized with Daubechies transform.
用高斯分布函数模拟长期心率变异性记录
提出了一种利用高斯分布函数对长期心率变异性数据进行数学建模的算法。心脏序列的时域表示是用小波反变换进行的。利用不同的小波基实现了该变换,并与经典的傅里叶变换实现算法进行了比较。根据所使用的小波基(Db4, Db6, Db8, Db12, Db20)和实现程序过程所需的CPU时间来分析所创建的时间序列。结果表明,采用Daubechies变换实现的算法具有较高的IT效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信