Toward a World with Intelligent Machines That Can Interpret the Visual World

Gabriel Kreiman
{"title":"Toward a World with Intelligent Machines That Can Interpret the Visual World","authors":"Gabriel Kreiman","doi":"10.1017/9781108649995.010","DOIUrl":null,"url":null,"abstract":"In the previous chapter, we introduced the idea of directly comparing computational models versus human behavior in visual tasks. For example, we assess how models classify an image versus how humans classify the same image. In some tasks, the types of errors made by computational models can be similar to human mistakes. Here we will dig deeper into what current computer vision algorithms can and cannot do. We will highlight the enormous power of current computational models, while at the same time emphasizing some of their limitations and the exciting work ahead of us to build better models.","PeriodicalId":302701,"journal":{"name":"Biological and Computer Vision","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108649995.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the previous chapter, we introduced the idea of directly comparing computational models versus human behavior in visual tasks. For example, we assess how models classify an image versus how humans classify the same image. In some tasks, the types of errors made by computational models can be similar to human mistakes. Here we will dig deeper into what current computer vision algorithms can and cannot do. We will highlight the enormous power of current computational models, while at the same time emphasizing some of their limitations and the exciting work ahead of us to build better models.
走向一个拥有可以解读视觉世界的智能机器的世界
在前一章中,我们介绍了在视觉任务中直接比较计算模型与人类行为的想法。例如,我们评估模型如何对图像进行分类,而人类如何对同一图像进行分类。在某些任务中,计算模型所犯的错误类型可能类似于人类的错误。在这里,我们将深入研究当前的计算机视觉算法能做什么和不能做什么。我们将强调当前计算模型的巨大力量,同时强调它们的一些局限性,以及在我们面前建立更好模型的令人兴奋的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信