Probabilistic map fusion for fast, incremental occupancy mapping with 3D Hilbert maps

K. Doherty, Jinkun Wang, Brendan Englot
{"title":"Probabilistic map fusion for fast, incremental occupancy mapping with 3D Hilbert maps","authors":"K. Doherty, Jinkun Wang, Brendan Englot","doi":"10.1109/ICRA.2016.7487233","DOIUrl":null,"url":null,"abstract":"We present a novel formulation of Hilbert mapping in which we construct a global occupancy map by incrementally fusing local overlapping Hilbert maps. Rather than maintain a single supervised learning model for the entire map, a new model is trained with each of a robot's range scans, and queried at all points within the robot's perceptual field. We treat the probabilistic output of the classifier as a sensor, employing sensor fusion to merge local maps. This formulation allows Hilbert mapping to be used incrementally in real-world mapping scenarios with overlap between sensor observations. The methodology is applied to three-dimensional map-building, and evaluated using real and simulated 3D range data.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We present a novel formulation of Hilbert mapping in which we construct a global occupancy map by incrementally fusing local overlapping Hilbert maps. Rather than maintain a single supervised learning model for the entire map, a new model is trained with each of a robot's range scans, and queried at all points within the robot's perceptual field. We treat the probabilistic output of the classifier as a sensor, employing sensor fusion to merge local maps. This formulation allows Hilbert mapping to be used incrementally in real-world mapping scenarios with overlap between sensor observations. The methodology is applied to three-dimensional map-building, and evaluated using real and simulated 3D range data.
概率地图融合快速,增量占用映射与3D希尔伯特地图
本文提出了一种新的希尔伯特映射公式,通过增量融合局部重叠的希尔伯特映射来构造全局占用图。不是为整个地图维护一个单一的监督学习模型,而是用机器人的每个范围扫描来训练一个新模型,并在机器人感知场的所有点上进行查询。我们将分类器的概率输出作为传感器,使用传感器融合来合并局部地图。该公式允许希尔伯特映射在传感器观测之间重叠的真实世界映射场景中逐步使用。将该方法应用于三维地图构建,并使用真实和模拟的三维距离数据进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信