Nonnegative Matrix Factorization using Class Label Information

Isiuwa Kokoye, Lawrence Oke, Padonou Izogie
{"title":"Nonnegative Matrix Factorization using Class Label Information","authors":"Isiuwa Kokoye, Lawrence Oke, Padonou Izogie","doi":"10.1109/FSKD.2013.6816258","DOIUrl":null,"url":null,"abstract":"Nonnegative matrix factorization (NMF) has been a powerful tool for finding out parts-based, linear representations of nonnegative data samples. Nevertheless, NMF is an unsupervised algorithm, and it is not able to utilize the class label information. In this paper, the Nonnegative Matrix Factorization using Class Label Information (NMF-CLI) is proposed. It combines the class label information for factorization constraints. The proposed NMF-CLI method is investigated with one cost function and the corresponding update rules are given. Experiment results show the power of the proposed novel algorithm, by comparing to the state-of-the-art methods.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonnegative matrix factorization (NMF) has been a powerful tool for finding out parts-based, linear representations of nonnegative data samples. Nevertheless, NMF is an unsupervised algorithm, and it is not able to utilize the class label information. In this paper, the Nonnegative Matrix Factorization using Class Label Information (NMF-CLI) is proposed. It combines the class label information for factorization constraints. The proposed NMF-CLI method is investigated with one cost function and the corresponding update rules are given. Experiment results show the power of the proposed novel algorithm, by comparing to the state-of-the-art methods.
使用类标签信息的非负矩阵分解
非负矩阵分解(NMF)已经成为寻找非负数据样本的基于部分的线性表示的有力工具。然而,NMF是一种无监督算法,它不能利用类标签信息。本文提出了一种基于类标签信息的非负矩阵分解方法。它结合了分解约束的类标签信息。研究了单代价函数的NMF-CLI方法,并给出了相应的更新规则。实验结果表明了该算法的有效性,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信