Region covariance based object tracking using Monte Carlo method

Xiaofeng Ding, Chengrong Huang, Fengchen Huang, Lizhong Xu, Xiaofang Li
{"title":"Region covariance based object tracking using Monte Carlo method","authors":"Xiaofeng Ding, Chengrong Huang, Fengchen Huang, Lizhong Xu, Xiaofang Li","doi":"10.1109/ICCA.2010.5524120","DOIUrl":null,"url":null,"abstract":"Covariance features enabled efficient fusion of different type of image features have low dimensions and covariance-based object tracking has been proved robust, versatile for a modest computational cost. In this paper, a method combined Monte Carlo method and covariance features is proposed. Monte Carlo method is used to determine the scope of the search target at the region level. Covariance features are used to model the objects appearance at the object level. An improved object matching and occlusion handling strategies are given, which are followed by an appearance model update method. Experiments show our approach is robust and effective for tracking the object with irregular movement and partial occlusions.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Covariance features enabled efficient fusion of different type of image features have low dimensions and covariance-based object tracking has been proved robust, versatile for a modest computational cost. In this paper, a method combined Monte Carlo method and covariance features is proposed. Monte Carlo method is used to determine the scope of the search target at the region level. Covariance features are used to model the objects appearance at the object level. An improved object matching and occlusion handling strategies are given, which are followed by an appearance model update method. Experiments show our approach is robust and effective for tracking the object with irregular movement and partial occlusions.
基于区域协方差的蒙特卡罗目标跟踪方法
协方差特征可以有效地融合不同类型的低维图像特征,并且基于协方差的目标跟踪已被证明具有鲁棒性,通用性和适度的计算成本。本文提出了一种蒙特卡罗方法与协方差特征相结合的方法。蒙特卡罗方法用于确定区域级搜索目标的范围。协方差特征用于在对象级别对对象的外观进行建模。提出了一种改进的目标匹配和遮挡处理策略,并提出了一种外观模型更新方法。实验表明,该方法对于不规则运动和部分遮挡的目标跟踪具有鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信