Towards Robust ML-Algorithms for the Condition Monitoring of Switchgear

R. Gitzel, I. Amihai, M. Perez
{"title":"Towards Robust ML-Algorithms for the Condition Monitoring of Switchgear","authors":"R. Gitzel, I. Amihai, M. Perez","doi":"10.1109/sa47457.2019.8938089","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our work-in-progress regarding the use of artificially generated data for the training of classifiers in an industrial context. In particular, our goal is to classify faulty/healthy switchgear by using infrared images. The paper describes the use of Generative Adversarial Networks (GANs) for the generation of new infrared images in order to bolster the meagre, repetitive and unbalanced data available to us. The paper describes the obstacles encountered, potential solutions, and the results of multiple experiments to test the impact of synthetic data on training.","PeriodicalId":383922,"journal":{"name":"2019 First International Conference on Societal Automation (SA)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference on Societal Automation (SA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sa47457.2019.8938089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we describe our work-in-progress regarding the use of artificially generated data for the training of classifiers in an industrial context. In particular, our goal is to classify faulty/healthy switchgear by using infrared images. The paper describes the use of Generative Adversarial Networks (GANs) for the generation of new infrared images in order to bolster the meagre, repetitive and unbalanced data available to us. The paper describes the obstacles encountered, potential solutions, and the results of multiple experiments to test the impact of synthetic data on training.
开关设备状态监测的鲁棒ml算法研究
在本文中,我们描述了我们正在进行的关于在工业环境中使用人工生成的数据来训练分类器的工作。特别是,我们的目标是通过红外图像对故障/健康开关柜进行分类。本文描述了生成对抗网络(GANs)用于生成新的红外图像,以支持我们可用的贫乏,重复和不平衡的数据。本文描述了遇到的障碍,潜在的解决方案,以及多个实验的结果,以测试合成数据对训练的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信